ПAmIBIA UПIVERSITY OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BSAM	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: JANUARY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION PAPER	
EXAMINER	DR. NEGA CHERE
MODERATOR:	DR. DAVID IIYAMBO

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions in the booklet provided. |
| 2.
 3. All written work must be done in blue or black ink and sketches must |
| be done in pencil. |

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [36]

Let V and W be vector spaces over a filed \mathbb{R} and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a mapping.
1.1. State what does it means to say T is linear.
1.2. Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $\mathrm{T}\left(\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]\right)=\left[\begin{array}{c}\mathrm{y}+\mathrm{z} \\ \mathrm{z} \\ \mathrm{x}-\mathrm{z}\end{array}\right]$.
(a) Show that T is linear.
(b) Find the matrix of T with respect to the standard basis of \mathbb{R}^{3}.
(c) Use the result in (b) to find the Characteristic polynomial of T .
1.3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y, z)=(|x|, y+z)$. Determine whether T is linear on not.
[7]

QUESTION 2 [23]

2.1. Let $\mathcal{B}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ and $\mathrm{C}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ be bases for a vector space V and suppose

$$
v_{1}=6 u_{1}-2 u_{2} \text { and } v_{2}=9 u_{1}-4 u_{2} .
$$

(a) Find the change of coordinate matrix from \mathcal{B} to C .
(b) Use part (a) to find $[\mathrm{x}]_{\mathrm{C}}$ for $\mathrm{x}=-3 \mathrm{v}_{1}+2 \mathrm{v}_{2}$.
2.2. In P_{2}, find the change-of-coordinates matrix from the basis

$$
\begin{equation*}
\mathcal{B}=\left\{1-2 \mathrm{t}+\mathrm{t}^{2}, 3+4 \mathrm{t}^{2}, 2 \mathrm{t}+3 \mathrm{t}^{2}\right\} \text { to the standard basis } \mathrm{S}=\left\{1, \mathrm{t}, \mathrm{t}^{2}\right\} . \tag{5}
\end{equation*}
$$

2.3. Let $\mathcal{B}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ be a basis of \mathbb{R}^{3} in which $\mathrm{v}_{1}=(1,1,0), \mathrm{v}_{2}=(0,1,2)$ and $v_{3}=(1,0,-1)$. Find the coordinate vector of $v=(1,2,3)$ with respect to the basis \mathcal{B}. [8]

QUESTION 3 [8]

$$
\text { Let } \mathrm{A}=\mathrm{PDP}^{-1} \text { where } \mathrm{P}=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right] \text { and } \mathrm{D}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \text {. Then Compute } \mathrm{A}^{10} \text {. }
$$

QUESTION 4 [10]

Find the quadratic form $q(X)$ that corresponds to the symmetric matrix

$$
\left[\begin{array}{rrr}
0 & 4 & 2 \tag{10}\\
4 & 1 & 3 \\
2 & 3 & -2
\end{array}\right]
$$

QUESTION 5 [23]

5.1. Is $v=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $A=\left[\begin{array}{ccc}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$? If so, find the corresponding eigenvalue.
5.2. Let $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & 0 & -2 \\ 3 & 0 & 3\end{array}\right]$. Find the eigenvalues of A and the eigenspace corresponding to the largest eigenvalue. [17]

END OF SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER

